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It is argued that quantum mechanics follows naturally from the assumptions that there
are no fundamental causal laws but only probabilities for physical processes that are
constrained by symmetries, and reality is relational in the sense that an object is real
only in relation to another object that it is interacting with. The first assumption makes
it natural to include in the action for a gauge theory all terms that are allowed by the
symmetries, enabling cancellation of infinities, with only the terms in the standard model
observable at the energies at which we presently do our experiments. In this approach,
it is also natural to have an infinite number of fundamental interactions.
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1. INTRODUCTION

We are told that nature is fundamentally “capricious.” For example, if we
prepare many identical atoms in thesameexcited state at a given time, then they
decay at different times, in general. This has been a source of tremendous surprise,
if not shock, for many physicists who were brought up to accept, without question,
the paradigm of laws (Anandan, 1999). They believe that all physical systems
are governed by the same laws, which should compel identical systems having
the same initial conditions to behave in the same way. But if we are unbiased by
centuries of traditional physics conditioning, then we should actually be surprised
if all the atoms behave in the same way. Why should they? After all, they do not
communicate with each other to ensure that they would all decay at the same time.
And there is no evidence of a “cosmic rail road,” i.e., fundamental laws of nature,
that would compel all the atoms to behave in the same way (Anandan, 2002).

The view that there are fundamental laws worked very well in classical physics
until it was found that the laws of classical physics are really not fundamental.
When physicists found that the laws of classical physics were in disagreement with
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observation, they decided to replace these laws with new laws. Although they dis-
carded the existing laws, they did not give up the belief that there must be laws.
Newton’s second law of motion was replaced by Schrodinger’s law that was sup-
posed to govern the evolution of a quantum state. While this law is supposed to
govern theunobservedevolution of the state between measurements, it does not ap-
pear to govern theobservationof a quantum state, i.e., the process of measurement.

Some physicists found this state of affairs to be highly unsatisfactory. They
wanted the quantum laws to apply to every physical process including the process
of measurement. Everett (1957), for example, postulated that the Schr¨odinger
law applied to every quantum evolution, which implied that the wave function
never collapsed. Bohm (1952), on the other hand, regarded the wave function
and the particle to be real, the wave function playing the dual role of giving the
probability density for the particle and guiding the particle’s motion according to a
quantum law. Another approach, pioneered by Pearle (1986, 1989), was to modify
Schrödinger’s law to a new nonlinear law that would apply to the measurement
process.

These and similar approaches to quantum theory were based on two assump-
tions: (A) there are quantum laws that apply to every physical process, including
the measurement process, and (B) a system may exist by itself and its reality does
not depend on its interaction with other systems, which I shall call the assumption
of absolute reality. But the “capriciousness” of nature mentioned at the beginning
suggests that the assumption (A) may not be valid. The great difficulty in applying
quantum laws to the observed measurement process suggests that these laws may
not apply also to the unobserved state evolution in between measurements. The
strangeness of assumption (B) is seen if we imagine a universe consisting of only
one object. What is the metaphysical difference between this object existing and
not existing? But if there are two objects then these two objects may interact, and
each object would then have reality with respect to the other.

It seems reasonable therefore to suppose, instead, that (1) there are no fun-
damental causal laws but only probabilities for physical processes that are con-
strained by symmetries, and (2) reality is relational in that an object is real only in
relation to another object that it is interacting with. These two assumptions help
us to understand why the world is quantum mechanical. Assumption (1) implies
that nature must necessarily be indeterministic or “capricious,” which is consis-
tent with observed quantum phenomena. Assumption (2) explains why the act of
measurement brings into being the state of a quantum system. This is consistent
with the Copenhagen interpretation that denies absolute reality. But the present in-
terpretation goes beyond the Copenhagen interpretation by replacing the absolute
reality with relational reality. This allows for an objective reality that is relational.
According to the present view, a tree falls in a forest even when there is no one to
observe it, because of the interactions between the molecules constituting the tree
and their interaction with the environment.
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A version of relational reality was proposed by Rovelli (1996) and Mer-
min (1998a,b), who argued for the reality of “correlations without correlata.” But
this interpretation of quantum mechanics seems to be indistinguishable from the
Everett interpretation, which also has all the correlations in the wave function of
the universe. The present interpretation differs from these interpretations in two
ways: First the relational reality is associated with theinteractionsand not with
correlations. For example, the EPR correlation between two noninteracting spin-
half particles is due to an interaction that the two particles have undergone in the
past. Therefore, the measurements on an ensemble of such pairs that confirm these
correlations are due to the earlier interaction that the particles underwent. Second,
the implication of assumption (1) that the world is indeterministic introduces prob-
abilities from the very beginning. Whereas obtaining quantum probabilities in the
deterministic picture of Everett is a major problem.

In section 2, I shall discuss the fundamental role played by the Poincare
group of symmetries in quantum mechanics, and argue that symmetries are more
basic than laws. This argument will be extended, in section 3, to include gauge
symmetries. I shall then show, in section 4, that this point of view naturally leads
to quantum mechanics. Relational reality will be used to justify the Born rule for
obtaining quantum probabilities. Finally, in section 5, I shall argue, on the basis
of assumption (1) that there should not be a finite symmetry group that gives all
the fundamental interactions. This suggests that there must be an infinite number
of gauge interactions associated with the groupsSU(N), N= 1, 2, 3. . . .

2. MYSTERIES AND SYMMETRIES IN QUANTUM MECHANICS

One of the most mysterious aspects of quantum mechanics is thewave-
particle duality. The state of the system may be in an approximate eigenstate
of momentump, in which case it may be regarded as a wave, or in an approxi-
mate eigenstate of positionx, in which case it may be regarded as a particle. The
wave particle duality is therefore due tox andp being independent observables in
quantum theory. Closely related to this aspect iscomplementaritythat is implied
by the Heisenberg commutator the relation:

[xj , pk] = i hδ jk , j , k = 1, 2, 3. (1)

This is unlike in Newtonian physics where the momentum is defined byp=mdx
dt ,

and thereforex andp are not independent. Moreover,x andp commute in classical
physics.

Both aspects in quantum theory may be understood by realizing thatx andp
are independent generators of the inhomogeneous Galilei group that is the symme-
try group of nonrelativistic quantum mechanics.p generates spatial translation and
x generates Galilei boost, and therefore they are independent, which gives rise to
the wave-particle duality. During a measurement, what is observed is therelation
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between the apparatus and the observed system. This relation therefore should be
regarded as the observable. This is the fundamental reason why observables are
operators in quantum theory. These relations are elements of the symmetry group
that constitutes the quantum geometry (Anandan, 1999).

To understand the complementarity betweenx and p, consider the Poincare
Lie algebra relations:

[K j , Tk] = i δikT0, j , k = 1, 2, 3, [Tµ, Tν ] = 0, (2)

wherei K j generate Lorentz boosts andiTµ, µ= 0, 1, 2, 3 generate space-time
translations. HereK j are dimensionless because they get multiplied by the di-
mensionless parametersv/c and exponentiated to obtain the infinitesimal Lorentz
boosts, andTµ have the dimension of 1/length because they get multiplied by
distances and exponentiated to get the translations, and the exponents of course
must be dimensionless. To relateTj to the momentumpk that is conserved under
translation, it is therefore necessary to introduce a new scale that has the dimension
of momentum× length. This new fundamental constant, denotedh, enables also
the time translationT0 to be related to the energyp0 that is conserved because of
time translational symmetry. We then write

hTj = pj , j = 1, 2, 3, hcT0 = p0. (3)

The introduction of Planck’s constant here seems to be related to the space-time
description in physics.

The Lorentz transformations are generated byLµν = xµTν − xνTµ. Then

K j = L j 0 = x j T0+ x0Tj . (4)

Substituting this in the first relation in (2) and using (3),

[x j , pk] p0 = i hδi j p0, j , k = 1, 2, 3. (5)

Now ηµνTµTν = h−2c−2(p2
0 − p2) is a Casimir operator that commutes with the

Poincare group. For a given irreducible representation, we may therefore setp2
0 −

p2=m2c4, wherem is the mass. This implies that at low energies,p0≈mc2. Then
(5) becomes (1). We could have obtained (1) by writingTµ = i ∂

∂xµ and using (3).
But the purpose of the above exercise is to show that (1), which is so fundamental
to quantum mechanics, and the Heisenberg uncertainty principle of that follows
from it, ultimately comes from the Poincare Lie algebra relations (2).

Consider now the Poincare Lie algebra relation

[K j , T0] = iTj , j = 1, 2, 3. (6)

On using (4) and (3), this reads

1

c2
[x j , p0] p0 = i h pj , j = 1, 2, 3. (7)
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Writing p0 = mc2+ H , at low energies

[x j , H ]m= i h pj , j = 1, 2, 3. (8)

This is satisfied byH = 1
2mP2+V , whereV commutes withx j . It follows also

from the Poincare Lie algebra relations that [pj , H ]= 0 and [Jk, H ]= 0, where
Jk generate rotations. However, the above assumption of Poincare symmetries
implies that this nonrelativistic HamiltonianH corresponds to an isolated system
that is noninteracting.

The above procedure leads to the In¨onü–Wigner contraction (In¨onü and
Wigner, 1952) of the Poincare group to the quantum mechanical inhomogeneous
Galilei group. It was shown by Jauch (1968) that the covariance of time evolution
under the homogeneous Galilei group requires that the Hamiltonian that generates
time evolution must be of the form

H = 1

2m
[p− A(x, t)]2+ V(x, t). (9)

Thus symmetries determine the ‘law’ of quantum evolution as well as the interac-
tion of the quantum state that includes the electromagnetic interaction.

Another important consequence of the Poincare symmetries is seen by taking
the expectation value of with respect to the vacuum of the first of the relations (2)
with j = k:

〈0|[K j , Tj ]|0〉 = i 〈0|T0|0〉. (10)

Since the vacuum is invariant under translations or boosts, the left-hand side is zero.
Therefore,〈0|T0|0〉=0, which implies that the vacuum energy is zero. But, as is
well known, if we apply the laws of quantum mechanics to fields then the vacuum
energy isinfinitedue to the fact that the fields consist of infinite number of harmonic
oscillators that have zero point of energies. This shows that the symmetries should
be regarded as more fundamental than the “laws” that are applied to these harmonic
oscillators.

It is now tempting to say that the above fundamental role played by the
Poincare and Galilei groups in giving rise to quantum mechanics is due to the exis-
tence of space-time on which these groups act as symmetries. But the experimen-
tally observed intrinsic spin suggests that the symmetries are more fundamental
then the space-time description. The generatorsJk of the rotation groupSO(3) that
is a subgroup of the Poincare group are the components of angular momentum.
The commutator relations of these components are therefore the same as the Lie
algebra relations of the rotation group. The intrinsic spin that is contained in these
generators cannot be obtained from the space-time description that gives only the
orbital angular momentum. Also, as is well known, in this way only the integer
spin particles, or Bosons, are obtained. To obtain half integer spin particles, or
Fermions, it is necessary to postulateSU(2) that is the covering group ofSO(3)
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as the symmetry. We cannot regard a Fermionic wave function as “immersed” in
space-time because when it is rotated by 2π radians it changes sign, which has ob-
servable consequences (Aharonov and Susskind, 1967). TheSU(2) group, which
contains this transformation, cannot therefore be associated with the symmetries
of space. Also, the addition rules for angular momenta of two systems can only
be understood by considering irreducible representations ofSU(2) group in the
tensor product of the Hillbert spaces of the two systems, and not by regarding
angular momentum vector as representing rotation of matter in space about an
axis with arbitrary direction. To obtain this group, the usual space-time Poincare
group P needs to be replaced by the semidirect productP̃ of SL(2, C) and the
translational group. AndSU(2) is a subgroup ofSL(2, C). SinceP̃ is not a direct
consequence of the usual space-time description, we should regardP̃ as being
more fundamental than space-time.

3. STRUCTURE OF A GAUGE THEORY

More generally, in relativistic quantum theory, the quantum system interacts
with a general gauge field. The gauge symmetry group implies, via Noether’s theo-
rem, conserved quantities. These conserved quantities generate fields, which is be-
lieved to be in accordance with a “law.” For example, in electromagnetism the gauge
symmetry group isU (1) and the conserved quantity is the electric charge that gener-
ates the electromagnetic field in accordance with Maxwell’s law. The great achieve-
ment of Weyl and Yang-Mills was to recognize that the third side of this triangle
(Fig. 1) may be completed by means of the gauge principle, i.e., the gauge fields
may be obtained directly from the gauge group by requiring local gauge symmetry.

Fig. 1. The structure of a gauge theory. The fundamental role played
by the gauge symmetry group is shown from the fact that the gauge
field may be obtained from the gauge group via the conserved quan-
tities or directly by means of the gauage principle. The requirement
that both paths are equivalent suggests that all possible invariants
may play a role in the Lagrangian for the gauge field.
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The first side of this triangle, namely Noether’s theorem that gives the con-
served quantities from the symmetries, is tautological (Anandan, 2002) as mathe-
matical theorems are. The third side may be made nearly tautological if the gauge
principle is implemented not in a particular Lagrangian but as follows: To compare
vectors that belong to internal spaces at different space-time points, it is necessary
to introduce a connection that enables parallel transport of a vector from one point
to another. In fact, the gauge field may be introduced by giving the holonomy trans-
formations as elements of the symmetry group from which the connection may
be reconstructed, and the connection is then unique up to gauge transformations
(Anandan, 1983, 1986a). This shows that gauge fields may be obtained directly
from symmetries without a dynamical or causal law. On the other hand, for the sec-
ond side, it is usually supposed that the conserved quantity rigidly determines the
gauge field according to a “law.” This would make the second side fundamentally
different from the first and the third sides.

But I shall suppose now that going from the first vertex (symmetries) to the
third vertex (gauge field) along the third side is in some sense equivalent to going
along the first and the second sides. This implies that the second side should not pick
out a particular form of the Lagrangian or Hamiltonian like the first and the third
sides. Therefore, we shouldnotsuppose that the Lagrangian for the gauge field is
the Yang-Mills Lagrangian that is proportional to the Lorentzgauge invariant

I1 = Fi
µνFi µν . (11)

For the SU(2) gauge field, for example, any Lorentz-gauge invariant that is a
polynomial in the field strengthFi

µν is a polynomial function of 10 Lorentzgauge
invariants that are polynomials inFi

µν , of which only 9 are independent. The
simplest of these invariants is (11). But there are other invariants such asI2 =
εi jk Fi

µνF j νρ Fkµ
ρ or I3= Fi

µνF j µν F j
ρσ Fi ρσ on which the Lagrangian may depend

on. I shall therefore suppose, in accordance with the above hypothesis, that the
Lagrangian depends on all 10 invariants. More generally, for an arbitrary gauge
theory, I shall assume that the Lagrangian is a function of all the Lorentz-gauge
invariants.

This makes all three sides of the triangle in Fig. 1 similar in the sense that
none of them pick out a particular invariant to determine the dynamics. However, I
do not have an explanation for the values of coupling constants that should appear
in the Lagrangian apart from appealing to a version of the anthropic principle:
There are parallel universes that constitute what I have called polyverse (Anandan,
2002), and it then follows that we must live in a universe with coupling constants
that enable life to evolve.

According to the standard model, three of the four fundamental interac-
tions that are known today are described by a gauge theory with the gauge group
U (1)× SU(2)× SU(3). What about the remaining interaction, namely gravitation?
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From an experimental point of view, the best “law” that we have for gravitation
are the classical Einstein’s field equations. But this “law” does not determine
the signature of the metric. The Lorentzian signature of the metric, however, is
obtained by requiring invariance of the metric at each point under the Lorentz
group of symmetries. This suggests that for gravity as well symmetries may be
more fundamental than laws. Indeed, it is possible to characterize the gravita-
tional field by associating an element of the Poincare group with each (piecewise
differentiable) curve on space-time (Anandan, 1996) analogous to characterizing
a gauge field by associating gauge group elements with each such curve (Yang,
1974).

However, hitherto it has been held that a fundamental difference between
gravity and gauge fields is due to the Lagrangian for gauge fields being quadratic
in the curvature or field strength whereas the Einstein–Hilbert Lagrangian for
gravity is linear in the curvature. But the above hypothesis that the two paths to
gauge field from the gauge group should be equivalent removes this fundamental
distinction. This is because, according to this hypothesis, all the invariants should
be included in the Lagrangian for both gravity and gauge fields.

It is well known that the Einstein–Hilbert Lagrangian density for gravity√−gR, whereR is the Rcci scalar, is not renormalizable. If one requires that
there should be a “law” given by a Lagrangian that depends on a small finite
number of invariants then it becomes necessary to deal with the infinities that
arise in Feynman amplitudes by the process of renormalization. But if
the Lagrangian depends on all possible invariants then there are counter terms
to cancel all the infinities (Weinberg, 1995). The usual process of renormaliza-
tion that absorbs the infinities in a finite number of coupling constants was con-
ceived within the paradigm of laws because of the belief that the Lagrangian
that constitutes the “law” should depend on a small subset of all possible in-
variants. But if we allow all possible invariants then the infinities may all be
cancelled.

The present approach then appears to solve the riddle that arises within the
paradigm of laws of why nature should choose particular Lagrangians and not
others for the laws. This is because, according to the present view, all lagrangians
consistent with a given set of symmetries are allowed. However, in the present
approach, symmetries replace the fundamental role previously played by laws.
And the “laws” are obtained from the symmetries, as effective laws, instead of the
other way around.

4. WHY THE WORLD IS QUANTUM MECHANICAL

It was argued in section 2 that a great deal of quantum mechanics may be ob-
tained from the Poincare group of symmetries. In section 3, this argument was
extended to include the gauge symmetries that are used today to describe three of
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the four known fundamental interactions. From an operational point of view, ob-
serving the gauge field by a quantum mechanical probe is the same as observing the
holonomy transformations that are elements of the gauge group (Anandan, 1996).
Hence, symmetries are directly observable in quantum mechanics. But another im-
portant ingredient of quantum mechanics is the linearity of the time evolution of a
quantum state, which leads to the quantum measurement problem. Why should the
Hamiltonian obtained using symmetries in section 2, for example, generate linear
time evolutions of state vectors? It will now be argued that assumption (1), stated
in the Introduction, naturally leads to this linear time evolution, or Schr¨odinger’s
equation.

Since, according to assumption (1), there are no fundamental causal laws, all
the infinite possible ways in which a system may go from an initial state to a final
state should have equal probabilities. For this to make mathematical sensein the
absence of laws, there should be cancellation between the different paths in spite of
them having equal probabilities (Anandan, 2002). This becomes possible only by
introducing the probability amplitude associated with each path so that to determine
the probability of a process the amplitudes should be added for the different ways
in which the process can take place and the probability is determined from this
sum. Mathematical considerations then suggest that the probability amplitudes
should be complex numbers (Anandan, 2002).

The requirement that these probability amplitudes should be invariant under
the symmetries, in accordance with assumption (1), then gives quantum mechanics
in the Feynman path integral formulation, except that the action that is the phase of
the probability amplitude needs to include all possible terms that are invariant under
the symmetries. Since the Feynman path integral formulation is equivalent to the
Schrödinger formulation, we obtain the linear time evolution of the state vector.
Also, including all possible invariants in the action of a gauge theory provides
counter terms to cancel all the infinities that arise in summing the amplitudes in
the quantum field theory, as mentioned in section 3. But to have consistency with
experiments, only the lowest order terms in the action that are in the standard
model should be observable at the energies at which we do experiments at present.
It can be argued that such a theory would not have unitary time evolution at large
energies. But this argument is based on our present understanding of quantum field
theory, which may have to be modified at higher energies.

Howandwhendo we convert probability amplitudes into probabilities? Quan-
tum mechanics provides a clear answer to the question of “how,” namely the Born
rule, but is infamously ambiguous about the question of “when.” We are told
that probability amplitudes should be added or multiplied when no “observation”
is made, and that the probability amplitudes should be converted to probabili-
ties when an “observation” is made. But no clear criteria for what constitutes
an observation is given, apart from some vague ideas about interaction with a
macroscopic system. It is my contention that the answer to the above question of
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“when” provides also the answer to the question of “how,” i.e., a derivation of the
Born rule.

In classical physics, the events, for which we can only predict probabilities in
quantum physics, have no ontological ambiguity. These events are assumed to exist
independently of any observation of them. But even in classical physics, events are
due to interaction between two or more objects, such as the Einsteinian example
of lightning striking a railway track. The belief in the existence of an object inde-
pendently of its interaction, which I call absolute reality, cannot be operationally
confirmed. Absolute reality is therefore a metaphysical assumption, which can-
not even be philosophically defined because there does not exist a philosophical
criterion for distinguishing between “existence” and “nonexistence” other than ob-
servation. The assumption of absolute reality may be justified if its consequences
are confirmed by observation. But the observer dependence of the quantum state
suggests that this assumption is not valid.

I shall therefore assume, instead, that reality is relational in the sense that
two objects exist in relation to each other if and only if they interact. How can we
speak of objects whose very existence is conditional upon their interaction? The
statement that “there are no ghosts” does not presuppose the existence of ghosts.
So, there is no contradiction in referring to objects that do not exist, although in
the present case they would exist in a relational sense when they interact, which
necessitates referring to them. Even in classical physics, the reality of the electric
field is determined by what it does to a charge; the field is therefore real with respect
to the charge that it interacts with. The difference between classical and quantum
physics is that different charges respond to a classical field like as if it is the same
field, which gives the illusion that the field is independent of its interaction with the
charge. Whereas, in quantum physics, the states of two interacting systems become
entangled, in general, which should prevent us from assigning independent reality
to either state.

Relational reality leads to the experimentally observed Born rule for ob-
taining probabilities from probability amplitudes, which may therefore be re-
garded as evidence of relational reality. This is most easily seen in the double
slit interference experiment. If the particle going through one of the slits in-
teracts with another physical system, then it is this interaction that brings into
reality the particle going through that slit relative to the physical system that
it interacts with. If this interaction does not take place then the only way the
particle could go through the screen with the double slit is by passing through
the other slit. Therefore, for this arrangement, the probability of the particle in-
teracting with any part of the subsequent screen is the sum of the two prob-
abilities for passing through each of the two slits. This requirement naturally
leads to the Born rule that this probability is|ψ |2 whereψ is the sum of the
two probability amplitudes for the particle to go through the two slits (Anandan,
2002).
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A special case of an interaction is when a human being, or more generally
an animal being, makes an observation. what is observed then acquires relational
reality with respect to this being. We may therefore understand now Wigner’s
hypothesis that the “consciousness” collapses the wave function (Wigner, 1961)
as a special case of relational reality. However, it would be a mistake to assume, as
Wigner may have done implicitly, that the collapsed wave function has absolute
reality. For example, the Schr¨odinger cat inside a box may be alive in the sense
that different parts of its body are accordingly interacting with each other and
with the box. But an observer outside the box mayexpectthe cat to be in a super-
position of alive and dead states, on the basis of prior measurements, although
there is no interaction to verify this expectation due to the large number of degrees
of freedom of the cat. There is no contradiction between the two views because
reality is relational. However, the cat acquires relational reality only as alive or
dead because of the restrictions on the interactions that it could have with another
object. But if the cat is replaced by a microscopic system, then the outside observer
may observe this system in the expected superposition by means of a suitable
interaction, which is now possible because of its small number of degrees of
freedom. This provides a resolution of the Schr¨odinger cat paradox (Anandan,
2002).

Descartes’ famous statement “I think, therefore I am” (Cogito ergo sum)
created, despite Descartes’ healthy skepticism of reality, a great deal of confusion
in Western philosophy. “I think” means interactions between different parts of
the brain, which therefore have relational reality with respect to each other. But
concluding from this “I am,” implying absolute reality of the self, is an unjustified
extrapolation.

5. BEYOND SYMMETRIES

To do physics, we must communicate information. This naturally leads to
gauge fields and gravitation (Anandan, 1986b). The symmetry group of the ex-
perimentally very successful standard model is the direct product of the Poincare
group and the gauge group. This suggests that the gauge group may also just be
a direct product of groups, as it already is in the standard model. But if there is
one finite dimensional symmetry group that determines all interactions then this
would constitute a law. It may well be that the way we observe the universe with
the very limited apparati that we have which makes symmetries so useful. At the
low energies in which we do our experiments, the symmetry groupsU (1), SU(2),
SU(3), which are the simplest unitary groups, useful. But at higher energies, we
may find the gauge groups.SU(4), SU(5), SU(6), . . . useful.

The gauge groupSU(4) was used by Pati and Salam (1973a,b, 1974, 2002) to
unify quarks and leptons by putting the three color states of a quark and the corre-
sponding lepton in the same multiplet on which the fundamental representation of
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SU(4) acts. Also, the smallest simple group that contains the gauge group of the
standard model isSU(5), which has therefore been used in an attempt to unify the
electroweak and strong interactions (Georgi and Glashow, 1974). A major problem
in such grand unification models is that proton decay has not been observed yet.
Also, all the grand unification attempts implicitly assume that there exists a finite
dimensional symmetry group that unifies the fundamental interactions. But such
a symmetry group would constitute a law, and is therefore contrary to the spirit of
the present paper according to which there is no intelligent design to the universe.
This suggests that there should be an infinite hierarchy of fundamental interactions
associated withSU(n), n= 1, 2, 3, 4,. . . .

The universe on a large scale is held together by the gravitational interac-
tion, which is associated with the Poincare group (Anandan, 1983, 1986a). If we
probe deeper on the scale of molecules and atoms, we find that they are held
together by electromagnetic interactions, corresponding to theU (1) EM symme-
try group. Owing to the success of the standard model, we should say that the
electrons and the nucleus in an atom are held together by the electroweak field
corresponding toU (1)× SU(2), which leads to parity violation in atoms. If we
probe deeper, we observe the strong interactions that hold the quarks together
in neutrons, protons, and other hadrons, associated with the groupSU(3). The
fact that these are the simplest unitary groups suggests that this may be due to
the low energies of the experiments that we have been doing so far. Extrapo-
lating, it would appear that quarks and leptons have constituents that are held
together by a gauge field of theSU(4) group. But since quarks and leptons
have spin 1/2, we then expect this symmetry group to be broken so that three
of the four particles the fundamental representation form the quarks and lep-
tons. This is analogous to how in the Pati–Salam model theSU(4) symmetry
is broken so that the hadrons are formed by the quarks, while the leptons stand
apart.

Present experiments have placed an upper limit for the radii of quarks and
leptons of about 10−17 cm. The next generation of experiments in the Lepton–
Hadron Collider is expected to probe scales less than 10−18 cm. So, there is hope
that the above extrapolation to a superstrong force of theSU(4) gauge field may
be experimentally testable.

To conclude, we recall Einstein’s famous statement that our theories are to
the external world what clothes are to the human body. The physical theories
proposed so far have all been based on the assumption that there are fundamental
laws. This would mean that these laws or “clothes” may be made to fit the objective
reality more and more closely, but there is anunbridgeable gapbetween them.
The purpose of this paper was to argue that these “laws” are like “the emperor’s
new clothes.” For the relational reality obtained through our observations, laws
and, at a deeper level, symmetries are useful. But neither may be a reflection of
any fundamental structural realism.



P1: GCY

International Journal of Theoretical Physics [ijtp] pp984-05-472800 October 22, 2003 9:44 Style file version May 30th, 2002

Laws, Symmetries, and Reality 1955

ACKNOWLEDGMENT

I thank Yakir Aharonov, Pawel Mazur, and Parameswaran Nair for useful
discussions. This research was partially supported by an NSF grant and an ONR
grant.

REFERENCES

Aharonov, Y. and Susskind, L. (1967).Physical Review, 158, 1237–1239.
Anandan, J. (1978a).Journal of Mathematical Physics, 19, 260–268.
Anandan, J. and Roskies, R. (1978b).Journal of Mathematical Physics, 19, 2614–2618.
Anandan, J., InConference on Differential Geometric Methods in Theoretical Physics, Trieste, Italy,

July 1981, G. Denardo and H. D. Doebner, eds., World Scientific, Singapore, 1983, 211–215.
Anandan, J. (1986a).Physical Review D, 33(8), 2280–2287.
Anandan, J. (1986b).Physical Review D, 33(8), 2280–2287.
Anandan, J. (1996).Physical Review D, 53(2), 779–786.
Anandan, J. (1999).Foundations of Physics, 29(11), 1647–1672. (quant-ph/9808045).
Anandan, J. (2002a).Foundations of Physics Letters, 15(5), 415–438. (physics/0112020).
Anandan, J. (2002b).International Journal of Theoretical Physics, 41(2), 199–220. (quant-

ph/0012011).
Bohm, D. (1952).Physical Review, 85, 166–193.
Everett, H. (1957).Review of Modern Physics, 29, 454–462.
Georgi, H. and Glashow, S. L. (1974).Physical Review Letters, 32, 438.
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